On sets of integers containing k elements in arithmetic progression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sets of Integers Containing No k Elements in Arithmetic Progression

In 1926 van der Waerden [13] proved the following startling theorem : If the set of integers is arbitrarily partitioned into two classes then at least one class contains arbitrarily long arithmetic progressions. It is well known and obvious that neither class must contain an infinite arithmetic progression. In fact, it is easy to see that for any sequence an there is another sequence bn9 with b...

متن کامل

On Sets of Integers Not Containing Long Arithmetic Progressions

After this paper was completed, we learned that the main result had in fact been proved much earlier by R.A. Rankin (”Sets of integers containing not more than a given number of terms in arithmetical progression”, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/1961), 332–344). Since very few people appear to have been aware of that result, I have decided to leave the present paper on my web page as...

متن کامل

On the Density of Sets Containing No k-Element Arithmetic Progression of a Certain Kind

A theorem now known as Sperner’s Lemma [5] states that a largest collection of subsets of an n-element set such that no subset contains another is obtained by taking the collection of all the subsets with cardinal bn=2c. (We denote by bxc, resp. dxe, the largest integer less than or equal to x, resp. the smallest integer greater than or equal to x.) In other words, the density of a largest anti...

متن کامل

On sequences of positive integers containing no p terms in arithmetic progression

We use topological ideas to show that, assuming the conjecture of Erdös [4] on subsets of positive integers having no p terms in arithmetic progression (A. P.), there must exist a subset Mp of positive integers with no p terms in A. P. with the property that among all such subsets, Mp maximizes the sum of the reciprocals of its elements.

متن کامل

On Arithmetic Progressions in Sums of Sets of Integers

3 Proof of Theorem 1 9 3.1 Estimation of the g1 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Estimation of the g3 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Estimation of the g2 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Putting everything together. . . . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1975

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-27-1-199-245